#그래프 탐색 알고리즘, BFS/DFS
BFS, DFS 두가지 모두 그래프를 탐색하는 방법입니다.
그래프란, 정점(node)과 그 정점을 연결하는 간선(edge)으로 이루어진 자료구조의 일종을 말하며,
그래프를 탐색한다는 것은 하나의 정점으로부터 시작하여 차례대로 모든 정점들을 한 번씩 방문하는 것을 말합니다.
●DFS 깊이 우선 탐색 (Depth-First Search)

루트 노드(혹은 다른 임의의 노드)에서 시작해서 다음 분기로 넘어가기 전에 해당 분기를 완벽하게 탐색하는 방식을 말합니다.
예를 들어, 미로찾기를 할 때 최대한 한 방향으로 갈 수 있을 때까지 쭉 가다가 더 이상 갈 수 없게 되면 다시 가장 가까운 갈림길로 돌아와서 그 갈림길부터 다시 다른 방향으로 탐색을 진행하는 것이 깊이 우선 탐색 방식이라고 할 수 있습니다.
모든 노드를 방문하고자 하는 경우에 이 방법을 선택함
깊이 우선 탐색(DFS)이 너비 우선 탐색(BFS)보다 좀 더 간단함
검색 속도 자체는 너비 우선 탐색(BFS)에 비해서 느림
●BFS 너비 우선 탐색 (Breadth-First Search)

루트 노드(혹은 다른 임의의 노드)에서 시작해서 인접한 노드를 먼저 탐색하는 방법으로,
시작 정점으로부터 가까운 정점을 먼저 방문하고 멀리 떨어져 있는 정점을 나중에 방문하는 순회 방법입니다.
주로 두 노드 사이의 최단 경로를 찾고 싶을 때 이 방법을 선택합니다.
ex) 지구 상에 존재하는 모든 친구 관계를 그래프로 표현한 후 Sam과 Eddie사이에 존재하는 경로를 찾는 경우
깊이 우선 탐색의 경우 - 모든 친구 관계를 다 살펴봐야 할지도 모름
너비 우선 탐색의 경우 - Sam과 가까운 관계부터 탐색
●DFS와 BFS의 시간복잡도
두 방식 모두 조건 내의 모든 노드를 검색한다는 점에서 시간 복잡도는 동일합니다.
DFS와 BFS 둘 다 다음 노드가 방문하였는지를 확인하는 시간과 각 노드를 방문하는 시간을 합하면 됩니다.
깊이 우선 탐색(DFS)과 너비 우선 탐색(BFS) 활용한 문제 유형/응용
DFS, BFS은 특징에 따라 사용에 더 적합한 문제 유형들이 있습니다.
그래프의 모든 정점을 방문하는 것이 주요한 문제
단순히 모든 정점을 방문하는 것이 중요한 문제의 경우 DFS, BFS 두 가지 방법 중 어느 것을 사용하셔도 상관없습니다.
둘 중 편한 것을 사용하시면 됩니다.
경로의 특징을 저장해둬야 하는 문제
예를 들면 각 정점에 숫자가 적혀있고 a부터 b까지 가는 경로를 구하는데 경로에 같은 숫자가 있으면 안 된다는 문제 등, 각각의 경로마다 특징을 저장해둬야 할 때는 DFS를 사용합니다. (BFS는 경로의 특징을 가지지 못합니다)
최단거리 구해야 하는 문제
미로 찾기 등 최단거리를 구해야 할 경우, BFS가 유리합니다.
왜냐하면 깊이 우선 탐색으로 경로를 검색할 경우 처음으로 발견되는 해답이 최단거리가 아닐 수 있지만,
너비 우선 탐색으로 현재 노드에서 가까운 곳부터 찾기 때문에경로를 탐색 시 먼저 찾아지는 해답이 곧 최단거리기 때문입니다.
이밖에도
검색 대상 그래프가 정말 크다면 DFS를 고려
검색대상의 규모가 크지 않고, 검색 시작 지점으로부터 원하는 대상이 별로 멀지 않다면 BFS
출처 : https://velog.io/@lucky-korma/DFS-BFS%EC%9D%98-%EC%84%A4%EB%AA%85-%EC%B0%A8%EC%9D%B4%EC%A0%90
'TIL' 카테고리의 다른 글
| 220930 TIL 개인프로젝트 SQL쿼리 입문 (1) | 2022.09.30 |
|---|---|
| TIL 220929 (0) | 2022.09.29 |
| TIL 220927 (3) | 2022.09.27 |
| 220926 TIL 개인프로젝트 mysql 쿼리 입문 (2) | 2022.09.26 |
| TIL 220924 실전프로젝트 유지보수 트러블슈팅 (0) | 2022.09.24 |